terça-feira, 17 de setembro de 2013

Dicas de conjuntos parte 2

Relação de inclusão
A relação de inclusão possui 3 propriedades:
→ Propriedade reflexiva: A Î A, isto é, um conjunto sempre é subconjunto dele mesmo.
→ Propriedade anti-simétrica: se A Î B e B Î A, então A = B.
→ Propriedade transitiva: se A Î B e B Î C, então A Î C.

Conjunto complementar
Complementar de A com respeito a R e é representada por CRA = R - A.
No caso dos alunos de uma classe, o conjunto complementar do conjunto dos alunos presentes à aula será formado pelos alunos ausentes à aula.

União e intersecção de conjuntos
Dados dois conjuntos A e B, existe sempre um terceiro formado pelos elementos que pertencem a pelo menos um dos conjuntos a que chamamos conjunto união e representamos por: A U B.
Formalmente temos que: A U B = {x / x Î A ou x Î B}
A união de conjuntos obedece às seguintes propriedades:
→ Propriedade comutativa: A U B = B U A
→ Propriedade associativa: A U (B U C) = (A U B) U C
→ Elemento Neutro: A U Ø = A
Utilizando os diagramas de Venn (Figura abaixo), verificamos algumas das propriedades acima.
A intersecção dos conjuntos A e B é o conjunto formado pelos elementos que são ao mesmo tempo de A e de B, e é representada por: A ∩ B
Formalmente temos que: A ∩ B = {x| xÎA e xÎB}
A intersecção dos conjuntos A e B é o conjunto formado pelos elementos que são ao mesmo tempo de A e de B, e é representada por: A ∩ B
Formalmente temos que: A ∩ B = {x| xÎA  e xÎB}
A intersecção de dois conjuntos obedece às seguintes propriedades:
→ Propriedade comutativa: A ∩ B = B ∩ A
→ Propriedade associativa: A ∩ (B∩C) = (A∩B) ∩ C
→ Propriedade de idempotência: A ∩ A = A
→ A ∩ Ø = Ø
Relacionando união e intersecção, surgem duas outras propriedades interessantes:
→ Propriedade distributiva da união com relação à intersecção: A U (B∩C) = (AUB) ∩ (AUC);
→ Propriedade distributiva da intersecção com relação à união: A ∩ (BUC) = (A∩B) U (A∩C).

Nenhum comentário:

Postar um comentário